Integrated Care Increases Treatment and Improves Outcomes of Patients With Chronic Hepatitis C Virus Infection and Psychiatric Illness or Substance Abuse

Samuel B. Ho,*† Norbert Bräu,$‡ Ramsey Cheung,¶ Lin Liu,*‡ Courtney Sanchez,* Marisa Sklar,*‡ Tyler E. Phelps, Sonja G. Marcus,$ Micheline M. Wasil,* Amelia Tisi,§ Lia Huynh,¶ Shannon K. Robinson,*¶ Allen Gifford,**‡‡ Steven M. Asch,¶§ and Erik J. Groessl*†

1.背景与目标：慢性丙型肝炎（HCV）感染者伴有精神疾病或物质滥用面临显著的抗病毒治疗障碍。新策略可能需要提高治疗率和结果。我们研究了一个整合医疗服务（IC）协议，其中包括多学科护理协调和患者个案管理，是否可以增加伴有慢性HCV感染的患者接受抗病毒治疗（由干扰素为基础和直接抗病毒药物）并实现持续的病毒学反应（SVR）。

2.方法：我们进行了一个随机对照试验，研究3家美国医疗机构的数据。受试者（n = 363名参加HCV诊所的患者）被筛选并被测试为HCV阳性，且筛查出精神疾病或物质滥用。研究将受试者随机分为IC组或对照组（1:1）在2009年3月至2011年2月期间。一个中期精神健康护理专家在每个HCV诊所为IC组提供服务，包括精神健康干预和个案管理，根据协议进行。主要终点是SVR。

3.结果：受试者中有63%是非裔美国人，51%在过去5年内有家暴史，64%有精神疾病，65%在一年内有物质滥用。71%有慢性压力障碍，71%有急性压力，80%有HCV 1型，23%有肝纤维化。在28个月的随访期间，IC组的患者更多地开始接受抗病毒治疗，其中23%有HCV 1型，23%有肝纤维化。23%有精神疾病，71%有抑郁症状，80%有物质滥用，57%有精神疾病，65%在一年前有物质滥用。71%有慢性压力障碍，71%有急性压力，80%有HCV 1型，23%有肝纤维化。23%有精神疾病，71%有抑郁症状，80%有物质滥用。

4.结论：整合医疗服务增加了HCV感染的慢性丙型肝炎患者和/或物质滥用患者接受抗病毒治疗和实现SVR的比值，且没有严重的副作用事件。

Keywords: Care Integration; Hepatitis C; Substance Use Disorders; PTSD.
antiviral treatment is cost effective, even with new
direct-acting antiviral (DAA) medications, for all but a
few subsets of HCV patients.9–12 Despite these data, to
date, only a minority of HCV patients have received
antiviral treatment. Cumulative data from the VA HCV
Registry indicate that the percentage of VA patients with
HCV who have ever received HCV antiviral therapy
increased from 10.9% in 2004 to 14.4% in 2007 and to
23% in 2013.13 In the general US population, an estimated
7% to 11% of HCV patients have had antiviral treat-
ment.14 Without an expansion in treatment rates, pro-
jections suggest an increasing HCV burden from the
progression of cirrhosis and the development of hepa-
tocellular carcinoma and liver failure.15

Within this past year, antiviral treatment of HCV has
evolved from pegylated interferon and ribavirin, to
pegylated interferon and ribavirin with DAs, to inter-
feron-free DAA combinations. This has been accompanied
by greatly improved efficacy and reduced treatment-
related side effects. Despite these improvements, a large
percentage of HCV patients may be considered poor
treatment candidates because of psychiatric comorbidity
and/or substance use disorders (SUD). These comorbid-
ities are common among HCV patients and have been the
most frequently cited reasons for withholding antiviral
therapy in the past.9,11,12 Recent data from one VA medical
center indicated that 45% of current HCV patients are
poor candidates for interferon-free treatment based on
active psychiatric/SUD comorbidity, and Medicaid
currently precludes patients with active SUD from
receiving interferon-free medications in many states.13,14

Integrated care (IC) refers to health care in which a
wide variety of services are brought together to address
inter-related health problems, and maximize patient
compliance and outcomes. IC models have been effective
in improving process measures and outcomes for treat-
ing psychiatric illness and substance use in primary care
clinics and for improving treatment in acquired immune
deficiency syndrome clinics.15–17 To date, there are no
studies of IC protocols for increasing HCV treatment
rates or viral outcomes.

Our objective was to determine if an IC protocol could
increase sustained virologic response (SVR) and treat-
ment rates among chronic HCV patients at risk for psy-
chiatric and substance use comorbidities at 3 VA Medical
Centers.

Materials and Methods

Design Overview

A detailed description of the study methods was
published in 2013.18 The study was conducted at 3
diverse VA medical centers with established HCV clinics
staffed by experienced physicians (VA San Diego, VA Palo
Alto, Bronx, VA). Patients attending these HCV clinics
were screened and recruited from March 2009 through
February 2011 (Figure 1). Consented patients were
randomized at each site 1:1 using random assignment
software administered by the central site. The blocked,
stratified, randomization sequence was concealed from
research staff.

A data safety and monitoring board oversaw trial
progress including enrollment, study outcomes, and
serious adverse events. The study protocol is registered
with ClinicalTrials.gov (#NCT00722423). The study was
approved by the institutional review boards and each
institution and all co-authors had access to the study
data and reviewed and approved the final manuscript.

Study Participants

Study participants were VA patients with confirmed
active HCV infection (HCV polymerase chain reaction
positive) with substance use or psychiatric risk factors for
antiviral treatment. All patients attending VA HCV clinics
routinely received a standardized screening form as part
of their clinical care, consisting of a Beck Depression
Inventory, screening questionnaires for drug use, alcohol
use (AUDIT-C), and post-traumatic stress disorder,19
as described previously18 and as outlined in the
Supplementary Materials and Methods section. Human
immunodeficiency virus (HIV)/HCV co-infected patients
were eligible at the Bronx site only to provide preliminary
data on the benefits of the IC model for these patients.
Exclusion criteria included non-HCV-related liver disease
(except co-existing alcoholic liver disease), decom-
pressed cirrhosis, or other significant life-threatening
diseases (known malignancies and any incapacitating
lung, cardiac, renal, or autoimmune medical disease).
Ineligible patients also included treatment-experienced
patients who were not considered re-treatment candi-
dates (eg. previous treatment nonresponders or with
significant adverse events). The definition of "homeless"
refers to patients who were considered homeless within
5 years of the recruitment date; specific dates of being
homeless without accessing available temporary services
were not collected.

Intervention

Usual care. Patients randomized to usual care (UC)
received the standard of care required for HCV patients
consistent with current VA treatment guidelines. Each
HCV clinic had gastroenterology or infectious disease
physicians working with clinical nursing or midlevel
providers and a clinic psychiatrist or psychologist. Pa-
tients were either managed within the HCV clinic or
referred to standard mental health and substance use
clinics for further assessment and treatment as indicated
by the severity of the risk factors. Mental health care
provided by the HCV and non-HCV clinics did not follow
a specific protocol and varied in accordance to the
standard of care at those clinics.

February 2011 (Figure 1). Consented patients were
randomized at each site 1:1 using random assignment
software administered by the central site. The blocked,
stratified, randomization sequence was concealed from
research staff.

A data safety and monitoring board oversaw trial
progress including enrollment, study outcomes, and
serious adverse events. The study protocol is registered
with ClinicalTrials.gov (#NCT00722423). The study was
approved by the institutional review boards and each
institution and all co-authors had access to the study
data and reviewed and approved the final manuscript.

Study Participants

Study participants were VA patients with confirmed
active HCV infection (HCV polymerase chain reaction
positive) with substance use or psychiatric risk factors for
antiviral treatment. All patients attending VA HCV clinics
routinely received a standardized screening form as part
of their clinical care, consisting of a Beck Depression
Inventory, screening questionnaires for drug use, alcohol
use (AUDIT-C), and post-traumatic stress disorder,19
as described previously18 and as outlined in the
Supplementary Materials and Methods section. Human
immunodeficiency virus (HIV)/HCV co-infected patients
were eligible at the Bronx site only to provide preliminary
data on the benefits of the IC model for these patients.
Exclusion criteria included non-HCV-related liver disease
(except co-existing alcoholic liver disease), decom-
pressed cirrhosis, or other significant life-threatening
diseases (known malignancies and any incapacitating
lung, cardiac, renal, or autoimmune medical disease).
Ineligible patients also included treatment-experienced
patients who were not considered re-treatment candi-
dates (eg. previous treatment nonresponders or with
significant adverse events). The definition of "homeless"
refers to patients who were considered homeless within
5 years of the recruitment date; specific dates of being
homeless without accessing available temporary services
were not collected.

Intervention

Usual care. Patients randomized to usual care (UC)
received the standard of care required for HCV patients
consistent with current VA treatment guidelines. Each
HCV clinic had gastroenterology or infectious disease
physicians working with clinical nursing or midlevel
providers and a clinic psychiatrist or psychologist. Pa-
tients were either managed within the HCV clinic or
referred to standard mental health and substance use
clinics for further assessment and treatment as indicated
by the severity of the risk factors. Mental health care
provided by the HCV and non-HCV clinics did not follow
a specific protocol and varied in accordance to the
standard of care at those clinics.
Integrated care. The IC intervention was delivered according to a protocol manual by a midlevel mental health provider (MHP) located within each HCV clinic. The protocol included brief psychological interventions and case management provided in collaboration with clinic physicians, nurses, and other mental health providers. The MHP evaluated study participants and provided ongoing interventions designed to treat specific mental health problems. The MHP also facilitated a complete treatment evaluation, encouraged the initiation of antiviral treatment, and served as a regular contact and case manager. Further details of the IC case management protocol are available in the Supplementary Materials and Methods section and as described previously.18

Antiviral treatment. Physicians offered antiviral treatment to all patients in both study arms following recommendations and criteria in published professional organization and VA hepatitis C treatment guidelines.19 These guidelines were applied at each site, and specified that patients should show stable psychiatric disease, compliance with treatment recommendations, and sobriety from substance use for a period of time as established in each clinic. Patients initiating antiviral treatment were monitored using standard protocols. To promote inclusiveness and generalizability, the specific type of antiviral treatment was not specified in the study protocol, and was left to the discretion of the HCV clinical team. The standard of care for HCV treatment at study initiation was pegylated interferon alfa and ribavirin, but treatment was limited at all sites in late 2010 in anticipation of new therapies. DAA therapies, adding boceprevir or telaprevir to pegylated interferon alfa and...
ribavirin, were approved by the Food and Drug Admin-
istration and available in mid- to late 2011. Patients were
monitored for significant adverse events that resulted in
early termination of treatment.

**Outcomes and Follow-Up Evaluation**

The primary outcome for the study was SVR, deter-
dined by viral tests completed either 12 or 24 weeks
after the termination of therapy, because either of these
time frames currently are accepted as standard of
care.20,21 The main secondary outcomes were interferon-
based treatment initiation and completion of prescribed
treatment (range, 0%-100%). Treatment data were
abstracted from medical records and included type and
doses of medications initiated, planned treatment dura-
tion, and final treatment duration attained. Abstraction
was conducted by trained research staff at each site, and
then reviewed and audited by the data manager at the
central site.

Other secondary outcomes included serious adverse
events and health care utilization. Serious adverse events
were defined as any hospitalization, emergency room
visit, and/or death. All patients were followed up from
treatment initiation through July 2012, at which time the
intervention ended. Treatment completion outcomes
were followed up through May 2013, and the primary
outcome of SVR was followed up until August 2013.

**Statistical Analysis**

Sample size determination was performed as indicated
in the Supplementary Materials and Methods section, and
an enrollment of 360 patients was targeted to account for
attrition. An intent-to-treat analysis was performed for all
clinical outcomes. Descriptive statistics were used to
summarize baseline characteristics. Univariate and
multivariate analyses were used to assess the primary and
secondary outcomes. See the Supplementary Materials
and Methods section for further details of the statistical
analysis.

**Results**

**Study Participants**

A total of 1627 patients attending 3 HCV clinics were
evaluated; 966 patients were eligible for the study and
screened for psychiatric and/or substance use risk fac-
tors as part of standard clinic care. Of these, 755 (78%)
had a positive screen and 209 (22%) screened negative
for risk factors. Of the screen-positive patients, 378 pa-
tients provided informed consent and 364 patients
completed a baseline evaluation and were randomized
(Figure 1). One patient was enrolled in error and with-
drawn, leaving 182 patients in the IC and 181 patients in
the UC arm. Patients were enrolled over 22 months, and
the mean patient follow-up period across all sites was
28.1 months (SD, 5.53 mo).

The baseline characteristics for study participants are
listed in Table 1, and were similar in the IC and UC
groups. Participants were 63.5% non-white and had a
high frequency of known barriers to access (88.7% were
unemployed or disabled, 51.1% were homeless within
the prior 5 years, 63.9% had a psychiatric illness, and
64.5% had active drug use within 1 year and/or active
alcohol abuse based on a positive AUDIT-C score. The
mean Beck Depression Inventory score was 15.5, and
70.7% met the criteria for depression at enrollment. The
UC group has a higher percentage of married and separ-
ated patients. There were no significant differences in
any other baseline characteristic.

**Sustained Viral Response**

The number of patients with SVR was 2-fold greater
in the IC group (29 patients; 15.9%) compared with the
UC group (14 patients; 7.7%) and patients receiving IC
were more likely to have an SVR (odds ratio [OR] 2.26;
P = .018) in univariate analysis. The simple logistic
regression between each baseline characteristic and SVR
is shown in Table 2. The multivariate model showed that
patients receiving IC were more likely to have an SVR
than the UC group independent of the effects of genotype
and study site (OR, 2.26; P = .022) (Table 3). Primary
genotype (OR, 2.20; P = .033 for genotypes 2, 3, 4 vs
genotype 1), prior psychiatric disorder (OR, 0.44;
P = .017 yes vs no), and active drug use (OR, 0.47;
P = .034 for yes vs no) also were associated significantly
with SVR. By adding site to the fitted model, the inter-
vention effect stayed similar and site was not associated
significantly with the SVR. Of the 42 patients with HIV/
HCV co-infection, 6 patients (25%) initiated treatment
and 3 patients (12.5%) achieved SVR in the IC arm,
compared with 1 patient (5.6%) who initiated treatment
and 0 patients with SVR in the UC arm (P = .21 and .25,
respectively). An evaluation of the subgroups of patients
with and without active drug and alcohol abuse at
baseline is presented in the Supplementary Materials and
Methods section.

**Time to Treatment Initiation**

Patients in the IC arm were more likely to initiate
treatment over time (Figure 2A). The overall treatment
initiation rate in the IC arm was 58 of 182 (31.9%)
compared with 34 of 181 (18.8%) in the UC arm (P = .0054).
The log-rank test showed that the time to treat-
ment initiation was significantly different between the IC
and UC groups (P = .003) (Figure 2B).

The multivariate Cox regression model showed that
patients treated with IC started treatment earlier than
patients treated with UC (hazard ratio [HR], 2.01; P = .020
and .002), and the rate of starting treatment was increased
### Table 1. Patient Characteristics

<table>
<thead>
<tr>
<th>Demographics</th>
<th>Total (n = 363), n (%)</th>
<th>Integrated care (n = 182), n (%)</th>
<th>Usual care (n = 181), n (%)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Mean age, y (SD)</strong></td>
<td>55.4 (5.65)</td>
<td>55.3 (5.51)</td>
<td>55.5 (5.79)</td>
<td>.47</td>
</tr>
<tr>
<td><strong>Mean BMI (SD)</strong></td>
<td>27.7 (4.83)</td>
<td>27.5 (5.11)</td>
<td>27.8 (4.54)</td>
<td>.43</td>
</tr>
<tr>
<td><strong>Sex</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>355 (97.8)</td>
<td>178 (97.8)</td>
<td>177 (97.8)</td>
<td>1.00</td>
</tr>
<tr>
<td>Female</td>
<td>8 (2.2)</td>
<td>4 (2.2)</td>
<td>4 (2.2)</td>
<td></td>
</tr>
<tr>
<td><strong>Race/ethnicity</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>African American or black</td>
<td>141 (39.3)</td>
<td>66 (36.7)</td>
<td>75 (41.9)</td>
<td>.65</td>
</tr>
<tr>
<td>White (non-Hispanic)</td>
<td>131 (36.5)</td>
<td>69 (38.3)</td>
<td>62 (34.6)</td>
<td>.34</td>
</tr>
<tr>
<td>Hispanic</td>
<td>65 (18.1)</td>
<td>32 (17.8)</td>
<td>33 (18.4)</td>
<td>.35</td>
</tr>
<tr>
<td>Others</td>
<td>22 (6.1)</td>
<td>13 (7.2)</td>
<td>9 (5)</td>
<td></td>
</tr>
<tr>
<td><strong>Marital status</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>82 (22.8)</td>
<td>47 (26.1)</td>
<td>35 (19.4)</td>
<td>.045*</td>
</tr>
<tr>
<td>Married</td>
<td>60 (16.7)</td>
<td>26 (14.4)</td>
<td>34 (18.9)</td>
<td>.38</td>
</tr>
<tr>
<td>Separated</td>
<td>47 (13.1)</td>
<td>16 (8.9)</td>
<td>31 (17.2)</td>
<td>.39</td>
</tr>
<tr>
<td>Divorced</td>
<td>153 (42.5)</td>
<td>79 (43.9)</td>
<td>74 (41.1)</td>
<td>.50</td>
</tr>
<tr>
<td>Widowed</td>
<td>18 (5)</td>
<td>12 (6.7)</td>
<td>6 (3.3)</td>
<td></td>
</tr>
<tr>
<td><strong>Education</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grades 1–11</td>
<td>38 (10.5)</td>
<td>21 (11.5)</td>
<td>17 (9.4)</td>
<td>.81</td>
</tr>
<tr>
<td>High school/GED</td>
<td>119 (32.9)</td>
<td>56 (30.8)</td>
<td>63 (35)</td>
<td>.43</td>
</tr>
<tr>
<td>Some college</td>
<td>167 (46.1)</td>
<td>86 (47.3)</td>
<td>81 (45)</td>
<td>.44</td>
</tr>
<tr>
<td>College/postgraduate</td>
<td>38 (10.5)</td>
<td>19 (10.4)</td>
<td>19 (10.6)</td>
<td>.45</td>
</tr>
<tr>
<td><strong>Employment</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full and part time</td>
<td>41 (11.3)</td>
<td>21 (11.6)</td>
<td>20 (11)</td>
<td>.87</td>
</tr>
<tr>
<td>Unemployed</td>
<td>141 (39)</td>
<td>69 (38.1)</td>
<td>72 (39.8)</td>
<td>.47</td>
</tr>
<tr>
<td>Disabled</td>
<td>138 (38.1)</td>
<td>72 (39.8)</td>
<td>66 (36.5)</td>
<td>.48</td>
</tr>
<tr>
<td>Retired and others</td>
<td>42 (11.6)</td>
<td>19 (10.5)</td>
<td>23 (12.7)</td>
<td>.49</td>
</tr>
<tr>
<td><strong>Homeless in past 5 years</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>179 (51.1)</td>
<td>86 (48.9)</td>
<td>93 (53.4)</td>
<td>.40</td>
</tr>
<tr>
<td><strong>Clinical characteristics</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Primary genotype</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 1</td>
<td>281 (79.6)</td>
<td>148 (83.1)</td>
<td>133 (76)</td>
<td>.11</td>
</tr>
<tr>
<td>Types 2, 3, and 4</td>
<td>72 (20.4)</td>
<td>30 (16.9)</td>
<td>42 (24)</td>
<td>.54</td>
</tr>
<tr>
<td>Prior liver biopsy</td>
<td>116 (32)</td>
<td>60 (33)</td>
<td>56 (30.9)</td>
<td>.74</td>
</tr>
<tr>
<td>Biopsy after randomization</td>
<td>104 (28.7)</td>
<td>59 (32.4)</td>
<td>45 (24.9)</td>
<td>.13</td>
</tr>
<tr>
<td><strong>PTSD risk</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>201 (57.6)</td>
<td>97 (56.1)</td>
<td>104 (59.1)</td>
<td>.59</td>
</tr>
<tr>
<td>HIV/HCV co infection</td>
<td>42 (11.6)</td>
<td>24 (13.3)</td>
<td>18 (10)</td>
<td>.41</td>
</tr>
<tr>
<td>Prior HCV antiviral treatment</td>
<td>44 (12.1)</td>
<td>19 (10.4)</td>
<td>25 (13.8)</td>
<td>.34</td>
</tr>
<tr>
<td>Prior psychiatric illness</td>
<td>232 (63.9)</td>
<td>113 (62.1)</td>
<td>119 (65.7)</td>
<td>.51</td>
</tr>
<tr>
<td>Prior substance abuse</td>
<td>240 (66.1)</td>
<td>118 (64.8)</td>
<td>122 (67.4)</td>
<td>.66</td>
</tr>
<tr>
<td><strong>Number of prior medical illness</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>1.04 (1.06)</td>
<td>0.99 (1.01)</td>
<td>1.1 (1.11)</td>
<td>.36</td>
</tr>
<tr>
<td>Prior medical illness</td>
<td>237 (65.3)</td>
<td>115 (63.2)</td>
<td>122 (67.4)</td>
<td>.44</td>
</tr>
<tr>
<td><strong>Screen AUDIT-C score</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>2.27 (3.2)</td>
<td>2.09 (2.97)</td>
<td>2.46 (3.41)</td>
<td>.37</td>
</tr>
<tr>
<td>Screen AUDIT-C (≥4 as positive)</td>
<td></td>
<td></td>
<td></td>
<td>.59</td>
</tr>
<tr>
<td>Positive</td>
<td>96 (27.1)</td>
<td>46 (26.1)</td>
<td>50 (28.1)</td>
<td>.72</td>
</tr>
<tr>
<td><strong>Screen BDI score</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>15.5 (9.82)</td>
<td>15.4 (10.1)</td>
<td>15.5 (9.57)</td>
<td>.65</td>
</tr>
<tr>
<td>Screen BDI (≥10 positive)</td>
<td>248 (70.7)</td>
<td>123 (71.1)</td>
<td>125 (70.2)</td>
<td>.91</td>
</tr>
<tr>
<td>Positive</td>
<td>248 (70.7)</td>
<td>123 (71.1)</td>
<td>125 (70.2)</td>
<td>.91</td>
</tr>
<tr>
<td>Alcohol drinks at baseline month, n Mean (SD)</td>
<td>11.4 (33.7)</td>
<td>12.8 (36.4)</td>
<td>10.1 (30.8)</td>
<td>.95</td>
</tr>
<tr>
<td>Active drug use at baseline (within 1 year)</td>
<td>172 (47.4)</td>
<td>81 (44.5)</td>
<td>91 (50.3)</td>
<td>.29</td>
</tr>
<tr>
<td>Fibrosis level</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>2.26 (1.68)</td>
<td>2.3 (1.75)</td>
<td>2.22 (1.61)</td>
<td>.93</td>
</tr>
</tbody>
</table>

*Note: Some cells with rounding differences.*
Table 1. Continued

<table>
<thead>
<tr>
<th>Site</th>
<th>Total (n = 363), n (%)</th>
<th>Integrated care (n = 182), n (%)</th>
<th>Usual care (n = 181), n (%)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced fibrosis, a (%)</td>
<td>28/124 (22.6)</td>
<td>15/60 (25.0)</td>
<td>13/64 (20.3)</td>
<td>.67</td>
</tr>
<tr>
<td>San Diego, n</td>
<td>157</td>
<td>78</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>Bronx, n</td>
<td>124</td>
<td>63</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>Palo Alto, n</td>
<td>82</td>
<td>41</td>
<td>41</td>
<td></td>
</tr>
</tbody>
</table>

BDI, Beck Depression Inventory; PTSD, post-traumatic stress disorder.

*Screen AUDIT-C-positive score of 4 or higher at baseline. Patients with a positive AUDIT-C included 18% with a score of 4 to 7 and 9% with a score of 8 or higher.

*bScreen BDI-positive score includes scores of 10 or higher. Overall this included 35% of patients with mild depression (scores, 10–18), 27% with moderate depression (scores, 19–29), and 9% with severe depression (score, >30).

*aSelf-report active drug use and/or positive urine toxicology within 1 year of baseline (not including marijuana use).

tAdvanced fibrosis: Metavir fibrosis scores of 3 to 4 or Ishak fibrosis scores of 4, 5, and 6.

by 101% for subjects treated with IC (Table 3). We also found that homelessness in the past 5 years (HR, 1.88; P = .005 for yes vs no), active drug use (HR, 0.59; P = .019 for yes vs no), and primary genotype (HR, 1.72; P = .024 for genotypes 2, 3, or 4 vs genotype 1) were associated significantly with time to treatment initiation. By adding site to the fitted model, the intervention effect stayed similar and site showed a significant association with the time to treatment initiation (Palo Alto: HR, 0.43; P = .008; Bronx: HR, 0.57; P = .037). There was no significant interaction between site and intervention.

Treatment Adherence

Patients in the IC arm tended to show greater adherence to the planned therapy duration (Figure 3A). The mean percentage of treatment completion of planned duration was 70.3% (SD, 33.1%) in the IC arm and 61.7% (SD, 36.5%) in the UC arm. The proportion of patients completing at least 80% of planned treatment was 52% in the IC arm and 44% in the UC arm. The large majority of patients within the more than 80% adherence group completed 100% of the planned treatment duration in each arm (Figure 3A). Neither of these completion rates was significantly different between the 2 treatment groups. Of the patients completing less than 80% of the planned treatment duration in the IC and UC groups, reasons included adverse event (39% and 44%, respectively), viral nonresponse (46% and 56%, respectively), and nonadherence (15% and 0%, respectively). Patients in the IC group tended to have higher rates of on-treatment virologic response at week 12, at the end of treatment, and in the follow-up time period, with final SVR rates of 50.0% in the IC and 41% in the UC arms (Figure 3B), however, these differences were not statistically significant.

Adverse Events

There was no significant difference in the number of serious adverse events between the IC and UC groups, although there was a trend for numerically fewer hospitalizations, emergency room visits, and deaths in the IC group compared with the UC group (Supplementary Table 1).

Protocol Adherence

Patients randomized to the IC arm had frequent contact with the midlevel mental health practitioner (Supplementary Table 2). There was no evidence of cross-contamination of mental health practitioner with patients randomized to the UC group at any site. Patients in the IC group had a greater number of visits to the hepatitis C clinic at each site compared with patients in the UC group.

Discussion

A large percentage of HCV patients have psychiatric and SUD comorbidities. A nationwide VA database analysis indicated that 85.4% of HCV patients had a psychiatric or SUD comorbidity, and 31% had an inpatient psychiatric or SUD hospitalization in the past year. In non-VA clinics these comorbidities were cited as contraindications for antiviral therapy in 28% to 38% of patients. Interferon-free regimens have greatly simplified treatment; however, high costs, limited access to care, and concerns about compliance continue to represent barriers to treatment for patients with these comorbidities. The data presented indicate that an IC protocol using midlevel mental health providers for patients with hepatitis C and substance use and psychiatric comorbidities is effective, resulting in higher antiviral treatment rates and a 2-fold increase in the numbers of patients with a SVR. The intervention was safe, with no significant differences in serious adverse events of death, hospitalization, and emergency room visits. This study was a randomized trial that showed the effectiveness of any intervention designed to increase the number of patients to receive effective antiviral therapy who had hepatitis C and psychiatric and substance use comorbidities.
Table 2. Simple Logistic Regression for the Association Between SVR and Baseline Characteristics

<table>
<thead>
<tr>
<th>Baseline characteristics</th>
<th>P value</th>
<th>Odds ratio</th>
<th>95% confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>.90</td>
<td>1.004</td>
<td>0.95–1.06</td>
</tr>
<tr>
<td>BMI</td>
<td>.93</td>
<td>0.997</td>
<td>0.93–1.07</td>
</tr>
<tr>
<td>Race ethnicity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>African American</td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>.018</td>
<td>2.52</td>
<td>1.17–5.40</td>
</tr>
<tr>
<td>Hispanic</td>
<td>.73</td>
<td>1.20</td>
<td>0.42–3.40</td>
</tr>
<tr>
<td>Others</td>
<td>.84</td>
<td>1.18</td>
<td>0.24–5.73</td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>.77</td>
<td>1.19</td>
<td>0.38–3.74</td>
</tr>
<tr>
<td>Separated</td>
<td>.996</td>
<td>0.997</td>
<td>0.28–3.60</td>
</tr>
<tr>
<td>Divorced</td>
<td>.13</td>
<td>1.99</td>
<td>0.82–4.85</td>
</tr>
<tr>
<td>Widowed</td>
<td>.73</td>
<td>1.34</td>
<td>0.25–7.06</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grades 1–11</td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>High school</td>
<td>.96</td>
<td>1.03</td>
<td>0.35–3.01</td>
</tr>
<tr>
<td>Some college</td>
<td>.84</td>
<td>0.90</td>
<td>0.31–2.57</td>
</tr>
<tr>
<td>College or postgraduate</td>
<td>.25</td>
<td>0.37</td>
<td>0.07–2.02</td>
</tr>
<tr>
<td>Employment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employed</td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Unemployed</td>
<td>.11</td>
<td>0.51</td>
<td>0.22–1.18</td>
</tr>
<tr>
<td>Homeless in past 5 years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>.74</td>
<td>1.11</td>
<td>0.59–2.11</td>
</tr>
<tr>
<td>Genotype</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 1</td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Types 2, 3, and 4</td>
<td>.014</td>
<td>2.38</td>
<td>1.19–4.74</td>
</tr>
<tr>
<td>PTSD risk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>.95</td>
<td>0.98</td>
<td>0.51–1.88</td>
</tr>
<tr>
<td>HCV/HIV co-infection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>.32</td>
<td>0.54</td>
<td>0.16–1.82</td>
</tr>
<tr>
<td>Screen AUDIT-C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>.61</td>
<td>0.82</td>
<td>0.39–1.74</td>
</tr>
<tr>
<td>Screen BDI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>.52</td>
<td>1.28</td>
<td>0.60–2.73</td>
</tr>
<tr>
<td>Previous substance abuse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>.24</td>
<td>0.68</td>
<td>0.35–1.30</td>
</tr>
<tr>
<td>Prior medical illness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>.48</td>
<td>0.79</td>
<td>0.41–1.52</td>
</tr>
<tr>
<td>Prior liver biopsy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>.013</td>
<td>2.26</td>
<td>1.19–4.3</td>
</tr>
<tr>
<td>Prior psychiatric disorder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>.013</td>
<td>0.44</td>
<td>0.23–0.84</td>
</tr>
<tr>
<td>Alcohol drinks at baseline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>month, n</td>
<td>.60</td>
<td>1.002</td>
<td>0.99–1.01</td>
</tr>
<tr>
<td>Active drug use at baseline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>.04</td>
<td>0.50</td>
<td>0.25–0.97</td>
</tr>
<tr>
<td>Site</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Diego</td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Palo Alto</td>
<td>.06</td>
<td>0.43</td>
<td>0.18–1.03</td>
</tr>
<tr>
<td>Bronx</td>
<td>.006</td>
<td>0.32</td>
<td>0.14–0.73</td>
</tr>
</tbody>
</table>

BDI, Beck Depression Inventory; PTSD, post-traumatic stress disorder.

Table 3. Multivariate Regression Analysis

<table>
<thead>
<tr>
<th>Variables</th>
<th>Odds ratio</th>
<th>95% confidence interval</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Association between SVR and intervention group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervention group, IC vs UC</td>
<td>2.26</td>
<td>1.13–4.52</td>
<td>.022</td>
</tr>
<tr>
<td>Genotype, types 2, 3, 4 vs type 1</td>
<td>2.20</td>
<td>1.07–4.54</td>
<td>.033</td>
</tr>
<tr>
<td>Prior psychiatric disorder, yes vs no</td>
<td>.44</td>
<td>0.22–0.86</td>
<td>.017</td>
</tr>
<tr>
<td>Active drug use, yes vs no</td>
<td>.47</td>
<td>0.23–0.95</td>
<td>.034</td>
</tr>
</tbody>
</table>

Hazard ratio

| Association between time to treatment initiation and intervention group | | | |
| Intervention group, IC vs UC | 2.01 | 1.30–3.11 | .002 |
| Homeless in past 5 years, yes vs no | 1.88 | 1.21–2.92 | .005 |
| Genotype, types 2, 3, and 4 vs type 1 | 1.72 | 1.07–2.75 | .024 |
| Active drug use, yes vs no | 0.59 | 0.38–0.92 | .019 |

Multivariate logistic regression analysis of factors significantly associated with treatment initiation and SVR indicated that the IC intervention was highly significant (Table 3). We observed that a history of a prior psychiatric disorder and active drug use was associated significantly with less likelihood of having achieved an SVR on multivariate logistic regression. Subgroup analysis in patients with active drug or alcohol abuse at baseline, and patients without active substance abuse but with a risk for active psychiatric disease at baseline, showed that the IC intervention had positive effects on treatment initiation and SVR, respectively, in these groups (see the Supplementary Materials and Methods section). Interestingly, in contrast to non-VA studies, being homeless in the past 5 years at baseline was an independent predictor of initiating antiviral treatment (HR, 1.88; 95% confidence interval, 1.21–2.92; P = .005). This likely was owing to the existence of robust homeless outreach programs in the VA that bundle housing, social services, and medical care. Approximately 70% of homeless veterans were receiving services from long-term homeless shelters, including on-site individual, peer-based, and group counseling; individual case management; vocational rehabilitation; classes and school opportunities; and transportation for clinic visits. These include services that nonhomeless veterans do not receive. This additional support is hypothesized as enhancing antiviral treatment initiation and completion.

Although IC has been well studied in primary care settings related to SUD, depression, and HIV, the IC models are not well studied in specialty care and few have focused on impactful clinical outcomes.15,23,24 Previous studies of patients with chronic hepatitis C and substance use and/or psychiatric comorbidities have been descriptive, and suggested that multidisciplinary
care is feasible and safe, 25–28 or may lead to increased treatment candidacy. 29 The mechanism of the increased antiviral treatment rates and SVR in the integrated arm could not be specified in this study owing to the multiple components that were included in IC. These included elements of case management and linkage to care, self-management, symptom control, substance use treatment, education and motivation, side-effect management, and access issues and co-located care. Multicomponent interventions evolved out of the recognition that single-component interventions often were ineffective. As a result, there have been few studies that rigorously examined each component of an integrated intervention. 24 A recent modeling study of hypothetical integrated care programs for HCV care found that multicomponent interventions provided better outcomes and more value for the money than less costly interventions targeting single components. 30 We did observe a trend toward greater engagement of care at multiple levels in IC patients. This included an increased number of visits to the hepatitis
clinics, an increased number of liver biopsies after enrollment, higher adherence to planned duration of therapy once started on antiviral treatment, and generally lower rates of all adverse events. None of these observed differences reached statistical significance, but were all in the direction favoring IC. It is possible that physicians simply were more comfortable treating the higher-risk HCV patients because they knew they were receiving integrated care including case management.

Our study had a number of limitations, including the fact that the patients and providers were not blinded to the intervention using the IC practitioner. Cross-contamination between treatment arms was possible, however, the IC practitioner never interacted with patients randomized to the UC comparison group. If cross-contamination had occurred and physician involvement with the IC midlevel practitioner influenced his/her care of patients assigned to the UC arm, this likely would have increased antiviral treatment processes in the UC group, biasing the study toward the null hypothesis, and strengthening our conclusions. The study was limited to VA patients, who predominantly are male, and therefore the results are less applicable to community practices. Finally, the study was conducted during a time when antiviral treatments for HCV were changing to include DAA treatments, which slowed treatment rates over the period of transition.

To optimize the public health impact of antiviral treatments for HCV, the number of patients who are able to receive these treatments must be expanded. New interferon-free regimens have fewer side effects and are expected to expand treatment populations to include a broader range of patients, many with very significant psychiatric and substance abuse disorders. These data suggest that integrated care for hepatitis C patients is one tool to maximize the access and success of antiviral treatment across a broad patient population.

Supplementary Material

Note: To access the supplementary material accompanying this article, visit the online version of Clinical Gastroenterology and Hepatology at www.cghjournal.org, and at http://dx.doi.org/10.1016/j.cgh.2015.02.022.

References


Reprint requests
Address requests for reprints to: Samuel B. Ho, MD, VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, California 92161. e-mail: samuel.ho2@va.gov; fax: (858) 552-4327.

Conflicts of interest
These authors disclose the following: Samuel Ho has received research and grant support from Genetech, Inc, and Gilead Sciences, has served on the advisory board for Janssen Pharmaceuticals, Inc, and has served on the speakers bureau for Prime Education, Inc; Norbert Brau has received research and grant support from Gilead Sciences, BMS, Vertex, and AbbVie, has served on the advisory boards for Janssen Pharmaceuticals, Inc, and Gilead Sciences, and has served on the speakers bureau for Prime Education, Inc; Ramsey Cheung has received research and grant support from Gilead Sciences, and has served on the advisory board for Janssen Pharmaceuticals, Inc. The remaining authors disclose no conflicts.

Funding
Supported by VA Health Services Research and Development grant IIR-07-101-3.
Supplementary Materials and Methods

Screening Tests

The tests used to screen patients for eligibility in the study were described previously. These inclusion criteria included a Beck Depression Inventory score of 10 or greater, an AUDIT-C score of 4 or higher, a positive post-traumatic stress disorder-VA Primary Care screen (endorsement of ≥3 items), and/or drug use consisting of self-reported illicit drug use (illicit drugs other than marijuana and prescription drug abuse) within the previous 6 months. Patients scoring higher than the validated cut-off levels for any of these conditions were candidates for the study. For depression screening the original Beck Depression Inventory was used as updated in 1979. Studies have indicated a high correlation of the Beck Depression Inventory and the later Beck Depression Inventory II test. The diagnostic accuracy of the Beck Depression Inventory for clinical depression is 82% and higher as expressed by the area under the receiver operating characteristics curve, with sensitivities and specificities generally exceeding 80%. For post-traumatic stress disorder we used the primary care post-traumatic stress disorder screen, a 4-question tool that at a cut-off score of 3 or higher has been shown to have a sensitivity and specificity of 78% and 87%, respectively, for the diagnosis of post-traumatic stress disorder. Screening for illicit drug use (not including marijuana) included a drug use questionnaire that screened for drug use in the previous 6 months. Patients meeting this screening test completed questionnaires that evaluated drug use within the proceeding 1 year and charts were audited for positive urine toxicology screens. The AUDIT-C was used to identify patients with high-risk alcohol use, with a cut-off score of greater than 4, as indicated by national VA guidelines (www.hepatitis.va.gov/provider/tools/audit-c.asp). This score will identify 86% of patients with heavy drinking and/or active alcohol abuse or dependency (sensitivity) with a specificity of 72%.

Intervention

Integrated care protocol. The mental health providers in the study included 1 marriage and family therapist and 2 psychologists. All received uniform training in person at the beginning of the study and a written protocol and therapy manual. They had no prior experience with hepatitis C patients and they remained in each clinic for the duration of the study. Ongoing training and monitoring during the study consisted of monthly conference calls and patient discussions designed to maintain uniformity of the protocol and approach. We used a concept of integrated care that included practitioners working together as a team across specialties and service lines. The addition of a mental health provider to the usual clinic and under the collaborative direction of the hepatitis C providers (rather than a supervisor not involved in the clinic), represents an example of this type of integrated care. Other aspects of integrated care include using a common protocol, having frequent communication and meetings, having collaborative and common goals for patient care (initiating successful antiviral therapy), all of which were facilitated by the MH provider. Descriptions of the IC protocol were published previously. Parameters for antiviral treatment initiation for both IC and UC were the inclusion and exclusion criteria provided in the VA treatment guidelines in effect at the time of the study. These guidelines were uniform for the VA system and served as guidance for clinicians at each site. Treatment initiation guidelines called for substance use, depression, and other psychiatric conditions to be stable, which was determined by the practitioners as per standard medical criteria.

Statistical Analysis

Sample size determination. By using preliminary data, we estimated that 15% of patients in the UC arm would receive treatment and 30% would achieve an SVR, resulting in an overall SVR of 4.5%. For the IC arm, we estimated that 35% of patients would initiate treatment and that 40% of those initiating treatment would achieve an SVR, resulting in an overall SVR of 14%. With the earlier-described assumptions and a 2-sided type I error of 0.05, there was at least 80% power to detect that difference with a total of 330 patients (110 per site). An enrollment of 360 subjects was targeted to account for attrition.

Baseline characteristics. Descriptive statistics were used to summarize baseline characteristics. Baseline characteristics were compared between the intervention groups using the Wilcoxon rank sum test, the chi-square test and the Fisher exact test were used for comparison. Primary and secondary outcomes. Intent-to-treat analysis was performed for all clinical outcomes. Initially, the proportion of patients with SVR (primary study outcome) was compared between the UC and IC groups using a univariate Fisher exact test. Multivariate logistic regression was used to assess the difference in SVR between the 2 groups with adjustment for baseline characteristics. The association between baseline characteristics and SVR was assessed with univariate logistic regression first. The method of purposeful selection was used for the selection of covariates, with a P value less than .10 being kept in the final model. The likelihood ratio test was used for model comparison. Influential observations were assessed using Cook statistics and leverages. The final model was fitted by excluding influential observations and compared with the original model.

The main secondary outcome of time to treatment initiation was analyzed using the log-rank test and
visualized with a Kaplan–Meier curve. Cox proportional hazard modeling was used for multivariate analysis to adjust for baseline characteristics. The association between baseline characteristics and time to treatment initiation was assessed with univariate Cox regression as potential covariates in a multivariate model. Covariates for the final model were identified by purposeful selection. The partial likelihood ratio test was used for model comparison. The effects of influential observations on estimated parameters were assessed by score residuals and the proportional hazards assumption was assessed using the test by Grambsch and Therneau. The final multivariable Cox regression model was stratified by post-traumatic stress disorder risk owing to the violation of proportional hazards assumption. The influence of the study site and the interaction of the study site with the intervention arm was assessed in the fitted multivariate models for both SVR and treatment initiation. The percentage of treatment completion and the proportion of subjects completing 80% of treatment were compared between the 2 intervention groups using the Wilcoxon rank-sum test and the Fisher exact test. Adverse events were summarized by treatment group and compared using the Wilcoxon rank-sum test and the Fisher exact test. For subjects with and without active drug use at baseline and/or active alcohol abuse based on the AUDIT-C score at baseline, the differences in SVR, treatment initiation, and treatment completion between the UC and IC arms were compared using descriptive statistics and the appropriate univariate test such as the Fisher exact test and the Wilcoxon rank-sum test. All analyses were performed by SPSS and R, and a P value less than .05 was interpreted as statistically significant.

Subgroup Analyses: Subjects With and Without Active Drug and Alcohol Abuse

Among 234 subjects with active drug use and alcohol abuse at baseline, the IC intervention was associated significantly with treatment initiation (IC, 30.4%; UC, 16.4%; P = .013), but did not significantly affect the overall SVR rate in this group (IC, 10.7%; UC, 7.4%; P = .49). The mean adherence to the planned duration of treatment was 63.3% (SD, 34.3) for IC and 56.5% (SD, 39.5) for UC, and the proportion of patient completing at least 80% of the planned treatment was 41.2% in the IC and 45% in the UC arms. Neither of these completion rates was significantly different between the 2 intervention groups. Among 129 subjects with positive post-traumatic stress disorder risk and depression (Beck Depression Inventory, ≥10) but without active drug or alcohol abuse at baseline, the IC intervention was not associated significantly with treatment initiation (IC, 34.3%; UC, 23.7%; P = .25); but was associated with overall SVR (IC, 24.3% vs UC, 8.5%; P = .02). The mean adherence to the planned duration of treatment was 81.0% (SD, 27.5%) for the IC and 69.2% (SD, 31.5%) for the UC arm, and the proportion of patients completing at least 80% of the planned treatment was 62.5% in IC and 42.9% in the UC arm. Neither of these completion rates was significantly different between the 2 intervention groups.

It should be noted that the study was not powered to detect significant differences in subgroups. In the subgroup of patients with active drug and alcohol abuse at baseline, more patients started treatment in IC, although the number of patients was low and a significant increase in SVR was not found. For the subgroup of patients at high risk for post-traumatic stress disorder and depression without substance abuse, IC was associated with a significant increase in the total number of patients achieving SVR, and we observed nonsignificant trends of increased treatment initiation and adherence in the IC group that may have contributed to the increase in SVRs observed in this subgroup.

References

### Supplementary Table 2. Adherence to Protocol by Site for Clinic Visits With IC Mental Health Practitioner and for HCV Clinic Visits (Not Involving Mental Health)

<table>
<thead>
<tr>
<th></th>
<th>All sites</th>
<th>Bronx</th>
<th>Palo Alto</th>
<th>San Diego</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients IC, n</td>
<td>182</td>
<td>63</td>
<td>41</td>
<td>78</td>
</tr>
<tr>
<td>Patients UC, n</td>
<td>181</td>
<td>61</td>
<td>41</td>
<td>79</td>
</tr>
<tr>
<td>IC mental health practitioner visits</td>
<td>1821 (10.0)</td>
<td>695 (11.03)</td>
<td>370 (9.02)</td>
<td>756 (9.69)</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total HCV clinic visits (nonmetal health)</td>
<td>1670 (9.18)</td>
<td>507 (8.05)</td>
<td>208 (5.07)</td>
<td>955 (12.24)</td>
</tr>
<tr>
<td>Integrated care (visits per patient)</td>
<td>1052 (5.82)</td>
<td>404 (6.62)</td>
<td>129 (3.15)</td>
<td>519 (6.57)</td>
</tr>
<tr>
<td>Usual care (visits per patient)</td>
<td>124</td>
<td>48</td>
<td>33</td>
<td>43</td>
</tr>
<tr>
<td>IC patients without antiviral treatment, n</td>
<td>147</td>
<td>52</td>
<td>36</td>
<td>59</td>
</tr>
<tr>
<td>UC patients without antiviral treatment, n</td>
<td>566 (4.57)</td>
<td>312 (6.50)</td>
<td>80 (2.42)</td>
<td>174 (4.05)</td>
</tr>
<tr>
<td>Total HCV clinic visits (nonmetal health) for patients without antiviral treatment</td>
<td>522 (3.55)</td>
<td>288 (5.54)</td>
<td>80 (2.22)</td>
<td>154 (2.61)</td>
</tr>
</tbody>
</table>

NOTE. The time period was from April 1, 2009, through July 31, 2012. Each site implemented a similar number of visits per patient in the IC arm.

---

### Supplementary Table 1. Adverse Event Outcomes (Number of Hospitalizations, Emergency Room Visits, and Death From any Cause) for Patients Randomized to the IC Group (n = 182 Unique Patients) or the UC Group (n = 181 Unique Patients)

<table>
<thead>
<tr>
<th>Total (n = 363), mean (SD)</th>
<th>IC (n = 182), mean (SD)</th>
<th>UC (n = 181), mean (SD)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of hospitalization events/patient</td>
<td>0.89 (1.65)</td>
<td>0.79 (1.55)</td>
<td>0.99 (1.74)</td>
</tr>
<tr>
<td>Number of hospital days/patient</td>
<td>16.5 (37.2)</td>
<td>16.3 (42.5)</td>
<td>16.7 (31.7)</td>
</tr>
<tr>
<td>All subjects</td>
<td>0.98 (29.9)</td>
<td>9.38 (33.2)</td>
<td>10.3 (26.2)</td>
</tr>
<tr>
<td>Number of ER visits/patient</td>
<td>2.99 (4.2)</td>
<td>2.85 (4.1)</td>
<td>3.14 (4.30)</td>
</tr>
<tr>
<td>Number of deaths, n (%)</td>
<td>22 (6.1)</td>
<td>8 (4.4)</td>
<td>14 (7.7)</td>
</tr>
</tbody>
</table>

NOTE. The time period was from July 1, 2009, through August 1, 2012.

*There were 216 subjects (104 IC and 112 UC) with hospitalization events.

Hospital day was 0 for subjects without a hospitalization event.

Causes of death in the IC group were as follows: decompensated cirrhosis (2), cardiac arrest (1), medication overdose (1), cancer (1), unknown (3). No patients were receiving antiviral therapy. Causes of death in the UC group were as follows: decompensated cirrhosis (2), cancer (2), colitis (1), cardiac arrest (2), unknown (7). One of the unknown deaths occurred at 2 months on antiviral therapy.